Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Gerontol A Biol Sci Med Sci ; 73(9): 1187-1196, 2018 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-29415134

RESUMO

HIV-1 causes premature aging in chronically infected patients. Despite effective anti-retroviral therapy, around 50% of patients suffer HIV-associated neurocognitive disorders (HAND), which likely potentiate aging-associated neurocognitive decline. Microglia support productive HIV-1 infection in the brain. Elevated markers of cellular senescence, including p53 and p21, have been detected in brain tissues from patients with HAND, but the potential for microglia senescence during HIV-1 infection has not been investigated. We hypothesized that HIV-1 can induce senescence in microglia. Primary human fetal microglia were exposed to single-round infectious HIV-1 pseudotypes or controls, and examined for markers of senescence. Post-infection, microglia had significantly elevated: senescence-associated ß-galactosidase activity, p21 levels, and production of cytokines such as IL-6 and IL-8, potentially indicative of a senescence-associated secretory phenotype. We also found increased detection of p53-binding protein foci in microglia nuclei post-infection. Additionally, we examined mitochondrial reactive oxygen species (ROS) and respiration, and found significantly increased mitochondrial ROS levels and decreased ATP-linked respiration during HIV-1 infection. Supernatant transfer from infected cultures to naïve microglia resulted in elevated p21 and caveolin-1 levels, and IL-8 production. Finally, nucleoside treatment reduced senescence markers induction in microglia. Overall, HIV-1 induces a senescence-like phenotype in human microglia, which could play a role in HAND.


Assuntos
Senilidade Prematura , Senescência Celular/fisiologia , Infecções por HIV , Microglia/metabolismo , Senilidade Prematura/etiologia , Senilidade Prematura/metabolismo , Células Cultivadas , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Infecções por HIV/complicações , Infecções por HIV/metabolismo , HIV-1/fisiologia , Humanos , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Mitocôndrias/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , beta-Galactosidase/metabolismo
2.
Glia ; 65(3): 431-446, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27888531

RESUMO

Microglia support productive human immunodeficiency virus type 1 (HIV-1) infection and disturbed microglial function could contribute to the development of HIV-associated neurocognitive disorders (HAND). Better understanding of how HIV-1 infection and viral protein exposure modulate microglial function during the course of infection could lead to the identification of novel therapeutic targets for both the eradication of HIV-1 reservoir and treatment of neurocognitive deficits. This review first describes microglial origins and function in the normal central nervous system (CNS), and the changes that occur during aging. We then critically discuss how HIV-1 infection and exposure to viral proteins such as Tat and gp120 affect various aspects of microglial homeostasis including activation, cellular metabolism and cell cycle regulation, through pathways implicated in cellular stress responses including p38 mitogen-activated protein kinase (MAPK) and nuclear factor κB (NF-κB). We thus propose that the functions of human microglia evolve during both healthy and pathological aging. Aging-associated dysfunction of microglia comprises phenotypes resembling cellular senescence, which could contribute to cognitive impairments observed in various neurodegenerative diseases. In addition, microglia seems to develop characteristics that could be related to cellular senescence post-HIV-1 infection and after exposure to HIV-1 viral proteins. However, despite its potential role as a component of HAND and likely other neurocognitive disorders, microglia senescence has not been well characterized and should be the focus of future studies, which could have high translational relevance. GLIA 2017;65:431-446.


Assuntos
Envelhecimento , Infecções por HIV/patologia , Microglia/metabolismo , Microglia/virologia , Animais , Humanos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo
3.
PLoS One ; 9(9): e107389, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25265194

RESUMO

The adaptation of human immunodeficiency virus type-1 (HIV-1) to an array of physiologic niches is advantaged by the plasticity of the viral genome, encoded proteins, and promoter. CXCR4-utilizing (X4) viruses preferentially, but not universally, infect CD4+ T cells, generating high levels of virus within activated HIV-1-infected T cells that can be detected in regional lymph nodes and peripheral blood. By comparison, the CCR5-utilizing (R5) viruses have a greater preference for cells of the monocyte-macrophage lineage; however, while R5 viruses also display a propensity to enter and replicate in T cells, they infect a smaller percentage of CD4+ T cells in comparison to X4 viruses. Additionally, R5 viruses have been associated with viral transmission and CNS disease and are also more prevalent during HIV-1 disease. Specific adaptive changes associated with X4 and R5 viruses were identified in co-linear viral sequences beyond the Env-V3. The in silico position-specific scoring matrix (PSSM) algorithm was used to define distinct groups of X4 and R5 sequences based solely on sequences in Env-V3. Bioinformatic tools were used to identify genetic signatures involving specific protein domains or long terminal repeat (LTR) transcription factor sites within co-linear viral protein R (Vpr), trans-activator of transcription (Tat), or LTR sequences that were preferentially associated with X4 or R5 Env-V3 sequences. A number of differential amino acid and nucleotide changes were identified across the co-linear Vpr, Tat, and LTR sequences, suggesting the presence of specific genetic signatures that preferentially associate with X4 or R5 viruses. Investigation of the genetic relatedness between X4 and R5 viruses utilizing phylogenetic analyses of complete sequences could not be used to definitively and uniquely identify groups of R5 or X4 sequences; in contrast, differences in the genetic diversities between X4 and R5 were readily identified within these co-linear sequences in HIV-1-infected patients.


Assuntos
HIV-1/genética , Receptores CCR5/metabolismo , Receptores CXCR4/metabolismo , Algoritmos , Linhagem Celular , Genes Virais , HIV-1/metabolismo , Humanos
4.
Discov Med ; 18(97): 15-27, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25091485

RESUMO

MicroRNAs (miRNAs) are important cellular, small non-coding RNAs that regulate host gene expression and have well-characterized roles in inflammation and infectious diseases. It has become apparent as well that cellular miRNAs can play crucial roles in controlling HIV-1 infection and replication. Whether HIV-1 encodes and is able to express viral miRNAs in infected cells remains controversial. HIV-1 can manipulate the biogenesis of miRNAs as well as the expression profiles of cellular miRNAs. Toll-Like receptors (TLRs) are important pathogen recognition receptors that sense invading pathogens orchestrating innate and adaptive immune responses. Innate immune recognition of HIV-1 infection leads to activation of TLR7/8. Recent evidence has shown that certain miRNAs can also be recognized by TLR7/8 leading to immune activation. However, the potential TLR7/8-mediated recognition of HIV-1 encoded miRNAs and/or cellular miRNAs modulated in HIV-1 infected cells has not been experimentally explored. In this review, we summarize the current literature on HIV-1 infection and miRNAs. Furthermore, we underscore the need for future research on potential miRNA-induced activation of TLR7/8, which might contribute to the chronic immune activation observed in HIV-1 infected patients.


Assuntos
Infecções por HIV/metabolismo , HIV-1/fisiologia , Sistema Imunitário/fisiopatologia , MicroRNAs/metabolismo , Receptores Toll-Like/metabolismo , Replicação Viral , Infecções por HIV/genética , Infecções por HIV/virologia , Humanos , Sistema Imunitário/metabolismo
5.
FEBS Lett ; 588(18): 3501-10, 2014 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-25131930

RESUMO

Despite their differential cell tropisms, HIV-1 and HCV dramatically influence disease progression in coinfected patients. Macrophages are important target cells of HIV-1. We hypothesized that secreted HCV core protein might modulate HIV-1 replication. We demonstrate that HCV core significantly enhances HIV-1 replication in human macrophages by upregulating TNF-α and IL-6 via TLR2-, JNK-, and MEK1/2-dependent pathways. Furthermore, we show that TNF-α and IL-6 secreted from HCV core-treated macrophages reactivates monocytic U1 cells latently infected with HIV-1. Our studies reveal a previously unrecognized role of HCV core by enhancing HIV-1 infection in macrophages.


Assuntos
HIV-1/fisiologia , Interleucina-6/genética , Macrófagos/virologia , Fator de Necrose Tumoral alfa/genética , Proteínas do Core Viral/fisiologia , Replicação Viral , Coinfecção/virologia , Células HEK293 , Infecções por HIV/virologia , Hepatite C/virologia , Humanos , Interleucina-6/metabolismo , MAP Quinase Quinase Quinases/metabolismo , Sistema de Sinalização das MAP Quinases , Receptor 2 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima
6.
Curr HIV Res ; 12(2): 132-61, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24862329

RESUMO

The evolution of human immunodeficiency virus type 1 (HIV-1) with respect to co-receptor utilization has been shown to be relevant to HIV-1 pathogenesis and disease. The CCR5-utilizing (R5) virus has been shown to be important in the very early stages of transmission and highly prevalent during asymptomatic infection and chronic disease. In addition, the R5 virus has been proposed to be involved in neuroinvasion and central nervous system (CNS) disease. In contrast, the CXCR4-utilizing (X4) virus is more prevalent during the course of disease progression and concurrent with the loss of CD4(+) T cells. The dual-tropic virus is able to utilize both co-receptors (CXCR4 and CCR5) and has been thought to represent an intermediate transitional virus that possesses properties of both X4 and R5 viruses that can be encountered at many stages of disease. The use of computational tools and bioinformatic approaches in the prediction of HIV-1 co-receptor usage has been growing in importance with respect to understanding HIV-1 pathogenesis and disease, developing diagnostic tools, and improving the efficacy of therapeutic strategies focused on blocking viral entry. Current strategies have enhanced the sensitivity, specificity, and reproducibility relative to the prediction of co-receptor use; however, these technologies need to be improved with respect to their efficient and accurate use across the HIV-1 subtypes. The most effective approach may center on the combined use of different algorithms involving sequences within and outside of the env-V3 loop. This review focuses on the HIV-1 entry process and on co-receptor utilization, including bioinformatic tools utilized in the prediction of co-receptor usage. It also provides novel preliminary analyses for enabling identification of linkages between amino acids in V3 with other components of the HIV-1 genome and demonstrates that these linkages are different between X4 and R5 viruses.


Assuntos
Biologia Computacional/métodos , Infecções por HIV/metabolismo , Infecções por HIV/patologia , Humanos , Receptores CCR5/metabolismo , Receptores CXCR4/metabolismo
7.
J Mol Biol ; 426(6): 1178-97, 2014 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-24370931

RESUMO

Cellular microRNAs (miRNAs) are an important class of small, non-coding RNAs that bind to host mRNAs based on sequence complementarity and regulate protein expression. They play important roles in controlling key cellular processes including cellular inception, differentiation and death. While several viruses have been shown to encode for viral miRNAs, controversy persists over the expression of a functional miRNA encoded in the human immunodeficiency virus type 1 (HIV-1) genome. However, it has been reported that HIV-1 infectivity is influenced by cellular miRNAs. Either through directly targeting the viral genome or by targeting host cellular proteins required for successful virus replication, multiple cellular miRNAs seem to modulate HIV-1 infection and replication. Perhaps as a survival strategy, HIV-1 may modulate proteins in the miRNA biogenesis pathway to subvert miRNA-induced antiviral effects. Global expression profiles of cellular miRNAs have also identified alterations of specific miRNAs post-HIV-1 infection both in vitro and in vivo (in various infected patient cohorts), suggesting potential roles for miRNAs in pathogenesis and disease progression. However, little attention has been devoted in understanding the roles played by these miRNAs at a cellular level. In this manuscript, we review past and current findings pertaining to the field of miRNA and HIV-1 interplay. In addition, we suggest strategies to exploit miRNAs therapeutically for curbing HIV-1 infectivity, replication and latency since they hold an untapped potential that deserves further investigation.


Assuntos
Antivirais/uso terapêutico , Regulação Viral da Expressão Gênica , Infecções por HIV/genética , HIV/fisiologia , Imunidade Inata/imunologia , MicroRNAs/genética , RNA Viral/genética , Replicação Viral/genética , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , Humanos , Replicação Viral/imunologia
8.
Physiol Genomics ; 45(22): 1035-48, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24046280

RESUMO

RNA viruses represent the predominant cause of many clinically relevant viral diseases in humans. Among several evolutionary advantages acquired by RNA viruses, the ability to usurp host cellular machinery and evade antiviral immune responses is imperative. During the past decade, RNA interference mechanisms, especially microRNA (miRNA)-mediated regulation of cellular protein expression, have revolutionized our understanding of host-viral interactions. Although it is well established that several DNA viruses express miRNAs that play crucial roles in their pathogenesis, expression of miRNAs by RNA viruses remains controversial. However, modulation of the miRNA machinery by RNA viruses may confer multiple benefits for enhanced viral replication and survival in host cells. In this review, we discuss the current literature on RNA viruses that may encode miRNAs and the varied advantages of engineering RNA viruses to express miRNAs as potential vectors for gene therapy. In addition, we review how different families of RNA viruses can alter miRNA machinery for productive replication, evasion of antiviral immune responses, and prolonged survival. We underscore the need to further explore the complex interactions of RNA viruses with host miRNAs to augment our understanding of host-virus interplay.


Assuntos
MicroRNAs/genética , Vírus de RNA/genética , Animais , Terapia Genética , Vetores Genéticos , Interações Hospedeiro-Patógeno , Humanos , MicroRNAs/metabolismo , Interferência de RNA , Infecções por Vírus de RNA/genética , Infecções por Vírus de RNA/terapia , Vírus de RNA/imunologia , Vírus de RNA/metabolismo , RNA Viral/genética , RNA Viral/metabolismo
9.
ChemMedChem ; 8(3): 426-32, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23361947

RESUMO

The development of drug resistance remains a critical problem for current HIV-1 antiviral therapies, creating a need for new inhibitors of HIV-1 replication. We previously reported on a novel anti-HIV-1 compound, N(2)-(phenoxyacetyl)-N-[4-(1-piperidinylcarbonyl)benzyl]glycinamide (14), that binds to the highly conserved phosphatidylinositol (4,5)-bisphosphate (PI(4,5)P(2)) binding pocket of the HIV-1 matrix (MA) protein. In this study, we re-evaluate the hits from the virtual screen used to identify compound 14 and test them directly in an HIV-1 replication assay using primary human peripheral blood mononuclear cells. This study resulted in the identification of three new compounds with antiviral activity; 2-(4-{[3-(4-fluorophenyl)-1,2,4-oxadiazol-5-yl]methyl})-1-piperazinyl)-N-(4-methylphenyl)acetamide (7), 3-(2-ethoxyphenyl)-5-[[4-(4-nitrophenyl)piperazin-1-yl]methyl]-1,2,4-oxadiazole (17), and N-[4-ethoxy-3-(1-piperidinylsulfonyl)phenyl]-2-(imidazo[2,1-b][1,3]thiazol-6-yl)acetamide (18), with compound 7 being the most potent of these hits. Mechanistic studies on 7 demonstrated that it directly interacts with and functions through HIV-1 MA. In accordance with our drug target, compound 7 competes with PI(4,5)P(2) for MA binding and, as a result, diminishes the production of new virus. Mutation of residues within the PI(4,5)P(2) binding site of MA decreased the antiviral effect of compound 7. Additionally, compound 7 displays a broadly neutralizing anti-HIV activity, with IC(50) values of 7.5-15.6 µM for the group M isolates tested. Taken together, these results point towards a novel chemical probe that can be used to more closely study the biological role of MA and could, through further optimization, lead to a new class of anti-HIV-1 therapeutics.


Assuntos
Acetanilidas/farmacologia , Fármacos Anti-HIV/farmacologia , Antígenos HIV/química , HIV-1/metabolismo , Oxidiazóis/farmacologia , Fosfatidilinositol 4,5-Difosfato/química , Bibliotecas de Moléculas Pequenas/farmacologia , Replicação Viral/efeitos dos fármacos , Produtos do Gene gag do Vírus da Imunodeficiência Humana/química , Acetanilidas/química , Fármacos Anti-HIV/química , Sítios de Ligação , Células Cultivadas , Células HEK293 , Antígenos HIV/genética , Antígenos HIV/metabolismo , Humanos , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/metabolismo , Simulação de Acoplamento Molecular , Oxidiazóis/química , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Bibliotecas de Moléculas Pequenas/química , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo
10.
Bioorg Med Chem Lett ; 23(4): 1132-5, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23305922

RESUMO

Due to the emergence of drug-resistant strains and the cumulative toxicities associated with current therapies, demand remains for new inhibitors of HIV-1 replication. The HIV-1 matrix (MA) protein is an essential viral component with established roles in the assembly of the virus. Using virtual and surface plasmon resonance (SPR)-based screening, we describe the identification of the first small molecule to bind to the HIV-1 MA protein and to possess broad range anti-HIV properties.


Assuntos
Fármacos Anti-HIV/farmacologia , HIV-1/metabolismo , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo , Humanos , Modelos Moleculares , Terapia de Alvo Molecular , Ressonância de Plasmônio de Superfície
11.
Viruses ; 4(11): 2485-513, 2012 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-23202492

RESUMO

MicroRNAs (miRNAs) can exert a profound effect on Hepatitis C virus (HCV) replication. The interaction of HCV with the highly liver-enriched miRNA, miR-122 represents one such unique example of viruses having evolved mechanism(s) to usurp the host miRNA machinery to support viral life cycle. Furthermore, HCV infection can also trigger changes in the cellular miRNA profile, which may ultimately contribute to the outcome of viral infection. Accumulating knowledge on HCV-host miRNA interactions has ultimately influenced the design of therapeutic interventions against chronic HCV infection. The importance of microRNA modulation in Human Immunodeficiency Virus (HIV-1) replication has been reported, albeit only in the context of HIV-1 mono-infection. The development of HCV infection is dramatically influenced during co-infection with HIV-1. Here, we review the current knowledge on miRNAs in HCV mono-infection. In addition, we discuss the potential role of some miRNAs, identified from the analyses of public data, in HCV/HIV-1 co-infection.


Assuntos
Coinfecção/genética , Infecções por HIV/genética , Hepacivirus/fisiologia , Hepatite C/genética , MicroRNAs/genética , Coinfecção/terapia , Infecções por HIV/terapia , HIV-1/fisiologia , Hepatite C/terapia , Humanos , MicroRNAs/metabolismo
12.
PLoS Pathog ; 8(9): e1002937, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23028330

RESUMO

HIV-1 infection of macrophages plays a key role in viral pathogenesis and progression to AIDS. Polyinosine-polycytidylic acid (poly(I:C); a synthetic analog of dsRNA) and bacterial lipopolysaccharide (LPS), the ligands for Toll-like receptors (TLR) TLR3 and TLR4, respectively, are known to decrease HIV-1 infection in monocyte-derived macrophages (MDMs), but the mechanism(s) are incompletely understood. We found that poly(I:C)- and LPS-stimulation of MDMs abrogated infection by CCR5-using, macrophage-tropic HIV-1, and by vesicular stomatitis virus glycoprotein-pseudotyped HIV-1 virions, while TLR2, TLR7 or TLR9 agonists only partially reduced infection to varying extent. Suppression of infection, or lack thereof, did not correlate with differential effects on CD4 or CCR5 expression, type I interferon induction, or production of pro-inflammatory cytokines or ß-chemokines. Integrated pro-viruses were readily detected in unstimulated, TLR7- and TLR9-stimulated cells, but not in TLR3- or TLR4-stimulated MDMs, suggesting the alteration of post-entry, pre-integration event(s). Using microarray analysis and quantitative reverse transcription (RT)-PCR, we found increased microRNA (miR)-155 levels in MDMs upon TLR3/4- but not TLR7-stimulation, and a miR-155 specific inhibitor (but not a scrambled control) partially restored infectivity in poly(I:C)-stimulated MDMs. Ectopic miR-155 expression remarkably diminished HIV-1 infection in primary MDMs and cell lines. Furthermore, poly(I:C)-stimulation and ectopic miR-155 expression did not alter detection of early viral RT products, but both resulted in an accumulation of late RT products and in undetectable or extremely low levels of integrated pro-viruses and 2-LTR circles. Reduced mRNA and protein levels of several HIV-1 dependency factors involved in trafficking and/or nuclear import of pre-integration complexes (ADAM10, TNPO3, Nup153, LEDGF/p75) were found in poly(I:C)-stimulated and miR-155-transfected MDMs, and a reporter assay suggested they are authentic miR-155 targets. Our findings provide evidence that miR-155 exerts an anti-HIV-1 effect by targeting several HIV-1 dependency factors involved in post-entry, pre-integration events, leading to severely diminished HIV-1 infection.


Assuntos
HIV-1/fisiologia , Macrófagos/imunologia , Macrófagos/virologia , MicroRNAs/metabolismo , Receptor 3 Toll-Like/imunologia , Proteínas ADAM/genética , Proteínas ADAM/metabolismo , Proteína ADAM10 , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Antígenos CD4/biossíntese , Células Cultivadas , Quimiocinas CC/genética , Quimiocinas CC/imunologia , Quimiocinas CC/metabolismo , Citocinas/genética , Citocinas/imunologia , Citocinas/metabolismo , Células HEK293 , HIV-1/imunologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Interferon Tipo I/biossíntese , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia , Glicoproteínas de Membrana , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Poli I-C/metabolismo , Poli I-C/farmacologia , Interferência de RNA , RNA Interferente Pequeno , Receptores CCR5/biossíntese , Receptor 2 Toll-Like/imunologia , Receptor 4 Toll-Like/imunologia , Receptor 7 Toll-Like/imunologia , Receptor Toll-Like 9/imunologia , Proteínas do Envelope Viral
13.
Viruses ; 4(5): 901-23, 2012 05.
Artigo em Inglês | MEDLINE | ID: mdl-22754655

RESUMO

Toll-like Receptors (TLRs) sense viral infections and induce production of type I interferons (IFNs), other cytokines, and chemokines. Viral recognition by TLRs and other pattern recognition receptors (PRRs) has been proven to be cell-type specific. Triggering of TLRs with selected ligands can be beneficial against some viral infections. Macrophages are antigen-presenting cells that express TLRs and have a key role in the innate and adaptive immunity against viruses. Coronaviruses (CoVs) are single-stranded, positive-sense RNA viruses that cause acute and chronic infections and can productively infect macrophages. Investigation of the interplay between CoVs and PRRs is in its infancy. We assessed the effect of triggering TLR2, TLR3, TLR4, and TLR7 with selected ligands on the susceptibility of the J774A.1 macrophage cell line to infection with murine coronavirus (mouse hepatitis virus, [MHV]). Stimulation of TLR2, TLR4, or TLR7 did not affect MHV production. In contrast, pre-stimulation of TLR3 with polyinosinic-polycytidylic acid (poly I:C) hindered MHV infection through induction of IFN-ß in macrophages. We demonstrate that activation of TLR3 with the synthetic ligand poly I:C mediates antiviral immunity that diminishes (MHV-A59) or suppresses (MHV-JHM, MHV-3) virus production in macrophages.


Assuntos
Infecções por Coronavirus/imunologia , Interferon Tipo I/imunologia , Macrófagos/imunologia , Macrófagos/virologia , Vírus da Hepatite Murina/crescimento & desenvolvimento , Vírus da Hepatite Murina/imunologia , Receptor 3 Toll-Like/imunologia , Animais , Linhagem Celular , Infecções por Coronavirus/virologia , Interferon Tipo I/biossíntese , Camundongos , Poli I-C/imunologia , Poli I-C/metabolismo , Receptor 3 Toll-Like/metabolismo
14.
J Virol ; 86(16): 8472-81, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22647699

RESUMO

The HIV-1 capsid (CA) protein plays essential roles in both early and late stages of virl replication and has emerged as a novel drug target. We report hybrid structure-based virtual screening to identify small molecules with the potential to interact with the N-terminal domain (NTD) of HIV-1 CA and disrupt early, preintegration steps of the HIV-1 replication cycle. The small molecule 4,4'-[dibenzo[b,d]furan-2,8-diylbis(5-phenyl-1H-imidazole-4,2-diyl)]dibenzoic acid (CK026), which had anti-HIV-1 activity in single- and multiple-round infections but failed to inhibit viral replication in peripheral blood mononuclear cells (PBMCs), was identified. Three analogues of CK026 with reduced size and better drug-like properties were synthesized and assessed. Compound I-XW-053 (4-(4,5-diphenyl-1H-imidazol-2-yl)benzoic acid) retained all of the antiviral activity of the parental compound and inhibited the replication of a diverse panel of primary HIV-1 isolates in PBMCs, while displaying no appreciable cytotoxicity. This antiviral activity was specific to HIV-1, as I-XW-053 displayed no effect on the replication of SIV or against a panel of nonretroviruses. Direct interaction of I-XW-053 was quantified with wild-type and mutant CA protein using surface plasmon resonance and isothermal titration calorimetry. Mutation of Ile37 and Arg173, which are required for interaction with compound I-XW-053, crippled the virus at an early, preintegration step. Using quantitative PCR, we demonstrated that treatment with I-XW-053 inhibited HIV-1 reverse transcription in multiple cell types, indirectly pointing to dysfunction in the uncoating process. In summary, we have identified a CA-specific compound that targets and inhibits a novel region in the NTD-NTD interface, affects uncoating, and possesses broad-spectrum anti-HIV-1 activity.


Assuntos
Fármacos Anti-HIV/farmacologia , Proteínas do Capsídeo/antagonistas & inibidores , HIV-1/efeitos dos fármacos , HIV-1/fisiologia , Desenvelopamento do Vírus/efeitos dos fármacos , Fármacos Anti-HIV/síntese química , Fármacos Anti-HIV/toxicidade , Calorimetria , Linhagem Celular , Humanos , Testes de Sensibilidade Microbiana , Ligação Proteica , Reação em Cadeia da Polimerase em Tempo Real , Transcrição Reversa/efeitos dos fármacos , Vírus da Imunodeficiência Símia/efeitos dos fármacos , Ressonância de Plasmônio de Superfície , Internalização do Vírus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
15.
Antimicrob Agents Chemother ; 56(2): 1073-80, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22083481

RESUMO

The first stage of human immunodeficiency virus type 1 (HIV-1) infection involves the fusion of viral and host cellular membranes mediated by viral envelope glycoprotein gp120. Inhibitors that specifically target gp120 are gaining increased attention as therapeutics or preventatives to prevent the spread of HIV-1. One promising new group of inhibitors is the peptide triazoles, which bind to gp120 and simultaneously block its interaction with both CD4 and the coreceptor. In this study, we assessed the most potent peptide triazole, HNG-156, for inhibitory breadth, cytotoxicity, and efficacy, both alone and in combination with other antiviral compounds, against HIV-1. HNG-156 inhibited a panel of 16 subtype B and C isolates of HIV-1 in a single-round infection assay. Inhibition of cell infection by replication-competent clinical isolates of HIV-1 was also observed with HNG-156. We found that HNG-156 had a greater than predicted effect when combined with several other entry inhibitors or the reverse transcriptase inhibitor tenofovir. Overall, we find that HNG-156 is noncytotoxic, has a broad inhibition profile, and provides a positive combination with several inhibitors of the HIV-1 life cycle. These results support the pursuit of efficacy and toxicity analyses in more advanced cell and animal models to develop peptide triazole family inhibitors of HIV-1 into antagonists of HIV-1 infection.


Assuntos
Inibidores da Fusão de HIV/farmacologia , HIV-1/efeitos dos fármacos , Peptídeos/farmacologia , Triazóis/farmacologia , Adenina/análogos & derivados , Adenina/farmacologia , Fármacos Anti-HIV/química , Fármacos Anti-HIV/farmacologia , Fármacos Anti-HIV/toxicidade , Linhagem Celular , Quimioterapia Combinada , Proteína gp120 do Envelope de HIV/antagonistas & inibidores , Proteína gp120 do Envelope de HIV/metabolismo , Inibidores da Fusão de HIV/química , Inibidores da Fusão de HIV/toxicidade , HIV-1/classificação , HIV-1/patogenicidade , Humanos , Organofosfonatos/farmacologia , Peptídeos/química , Peptídeos/toxicidade , Inibidores da Transcriptase Reversa/farmacologia , Tenofovir , Triazóis/química , Triazóis/toxicidade , Replicação Viral/efeitos dos fármacos
16.
J Neurovirol ; 17(1): 92-109, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21225391

RESUMO

The long terminal repeat (LTR) regulates gene expression of HIV-1 by interacting with multiple host and viral factors. Cross-sectional studies in the pre-HAART era demonstrated that single nucleotide polymorphisms (SNPs) in peripheral blood-derived LTRs (a C-to-T change at position 3 of C/EBP site I (3T) and at position 5 of Sp site III (5T)) increased in frequency as disease severity increased. Additionally, the 3T variant correlated with HIV-1-associated dementia. LTR sequences derived by longitudinal sampling of peripheral blood from a single patient in the DrexelMed HIV/AIDS Genetic Analysis Cohort resulted in the detection of the 3T and 5T co-selected SNPs before the onset of neurologic impairment, demonstrating that these SNPs may be useful in predicting HIV-associated neurological complications. The relative fitness of the LTRs containing the 3T and/or 5T co-selected SNPs as they evolve in their native patient-derived LTR backbone structure demonstrated a spectrum of basal and Tat-mediated transcriptional activities using the IIIB-derived Tat and colinear Tat derived from the same molecular clone containing the 3T/5T LTR SNP. In silico predictions utilizing colinear envelope sequence suggested that the patient's virus evolved from an X4 to an R5 swarm prior to the development of neurological complications and more advanced HIV disease. These results suggest that the HIV-1 genomic swarm may evolve during the course of disease in response to selective pressures that lead to changes in prevalence of specific polymorphisms in the LTR, env, and/or tat that could predict the onset of neurological disease and result in alterations in viral function.


Assuntos
Complexo AIDS Demência/virologia , HIV-1/genética , HIV-1/patogenicidade , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas , Adulto , Sequência de Aminoácidos , Sequência de Bases , Linhagem Celular , Regulação Viral da Expressão Gênica , Genótipo , Infecções por HIV/virologia , Repetição Terminal Longa de HIV , HIV-1/fisiologia , Humanos , Estudos Longitudinais , Pessoa de Meia-Idade , Dados de Sequência Molecular , Ativação Transcricional , Replicação Viral , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismo , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo
17.
Am J Infect Dis ; 5(3): 219-224, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-20204076

RESUMO

PROBLEM STATEMENT: Despite massive national efforts to scale up Antiretroviral Therapy (ART) access in India since 2004, the AIDS death rate was 17.2 per 100,000 persons during 2003-2005. In the era of HAART in resource poor settings, it is imperative to understand and address the causes of AIDS related mortality. This collaborative study aimed at defining the predictors of mortality among people living with HIV/AIDS (PLHA) admitted during 2003-2005 to the Freedom Foundation (FF) Care and Support facility, Bangalore, India. APPROACH: Fifty consecutively selected HIV-infected patients who died during the study period and 50 HIV-infected patients matched by age, gender, route of transmission, nutrition status and stage of disease who survived at least 12 months post-ART were included in this study. The impact on mortality by factors such as: Hemoglobin, CD4+T lymphocyte counts, weight loss and Opportunistic Infections (OIs) were studied. Statistical analyses were done by Chi-square, Fisher's Exact Test, Kaplan-Meier and multivariate logistic regression. RESULTS: Recurrent diarrhea was a significant risk factor for mortality (OR = 12.25, p = 0.004), followed by a diagnosis of pulmonary tuberculosis (TB) at first admission (OR = 4.86) while TB in general also negatively impacted survival (p = 0.002). Though not statistically significant, Pneumocystis carinii pneumonia, Cryptococcal meningitis and Toxoplasmosis also negatively affected survival. Mortality was high among those not on HAART (81%) while it was significantly reduced (28%) among those on HAART (p<0.001). Patients who died had elevated liver enzymes (p = 0.027) and significant weight loss (p = 0.012). Mortality was high among patients irregular with their medical follow-up (p<0.001). CONCLUSION: Interventions that facilitate early OI diagnosis and treatment especially diarrhea and TB may reduce mortality in HIV. HAART alone without proper OI management and nutrition did not prevent mortality among PLHA. In resource poor settings, it becomes imperative to focus on low cost tools and increased capacity building along with regular clinical follow-up for diagnosis and early treatment of OIs. Further studies are warranted to explore benefits of initiating HAART earlier than currently recommended.

18.
Retrovirology ; 5: 89, 2008 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-18837996

RESUMO

BACKGROUND: HIV-1 infects macrophages and microglia in the brain and can cause neurological disorders in infected patients. We and others have shown that brain-derived envelope glycoproteins (Env) have lower CD4 dependence and higher avidity for CD4 than those from peripheral isolates, and we have also observed increased fusogenicity and reduced sensitivity to the fusion inhibitor T-1249. Due to the genetic differences between brain and spleen env from one individual throughout gp120 and in gp41's heptad repeat 2 (HR2), we investigated the viral determinants for the phenotypic differences by performing functional studies with chimeric and mutant Env. RESULTS: Chimeric Env showed that the V1/V2-C2-V3 region in brain's gp120 determines the low CD4 dependence and high avidity for CD4, as well as macrophage tropism and reduced sensitivity to the small molecule BMS-378806. Changes in brain gp41's HR2 region did not contribute to the increased fusogenicity or to the reduced sensitivity to T-1249, since a T-1249-based peptide containing residues found in brain's but not in spleen's HR2 had similar potency than T-1249 and interacted similarly with an immobilized heptad repeat 1-derived peptide in surface plasmon resonance analysis. However, the increased fusogenicity and reduced T-1249 sensitivity of brain and certain chimeric Env mostly correlated with the low CD4 dependence and high avidity for CD4 determined by brain's V1-V3 region. Remarkably, most but not all of these low CD4-dependent, macrophage tropic envelopes glycoproteins also had increased sensitivity to the novel allosteric entry inhibitor HNG-105. The gp120's C2 region asparagine 283 (N283) has been previously associated with macrophage tropism, brain infection, lower CD4 dependence and higher CD4 affinity. Therefore, we introduced the N283T mutation into an env clone from a brain-derived isolate and into a brain tissue-derived env clone, and the T283N change into a spleen-derived env from the same individual; however, we found that their phenotypes were not affected. CONCLUSION: We have identified that the V1-V3 region of a brain-derived envelope glycoprotein seems to play a crucial role in determining not only the low CD4 dependence and increased macrophage tropism, but also the augmented fusogenicity and reduced sensitivity to T-1249 and BMS-378806. By contrast, increased sensitivity to HNG-105 mostly correlated with low CD4 dependence and macrophage tropism but was not determined by the presence of the brain's V1-V3 region, confirming that viral determinants of phenotypic changes in brain-derived envelope glycoproteins are likely complex and context-dependent.


Assuntos
Encéfalo/virologia , Antígenos CD4/imunologia , Proteína gp120 do Envelope de HIV/imunologia , Inibidores da Fusão de HIV/farmacologia , Infecções por HIV/imunologia , HIV-1/fisiologia , Macrófagos/virologia , Internalização do Vírus/efeitos dos fármacos , Motivos de Aminoácidos , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/imunologia , Fusão Celular , Linhagem Celular , Células Cultivadas , Proteína gp120 do Envelope de HIV/química , Proteína gp120 do Envelope de HIV/genética , Infecções por HIV/metabolismo , Infecções por HIV/virologia , HIV-1/efeitos dos fármacos , HIV-1/genética , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Especificidade de Órgãos , Codorniz , Receptores CCR5/imunologia
19.
J Virol ; 81(7): 3645-8, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17251295

RESUMO

The AIDS epidemic continues to spread at an alarming rate worldwide, especially in developing countries. One approach to solving this problem is the generation of anti-human immunodeficiency virus (HIV) compounds with inhibition spectra broad enough to include globally prevailing forms of the virus. We have examined the HIV type 1 (HIV-1) envelope specificity of a recently identified entry inhibitor candidate, HNG-105, using surface plasmon resonance spectroscopy and pseudovirus inhibition assays. The combined results suggest that the HNG-105 molecule may be effective across the HIV-1 subtypes, and they highlight its potential as a lead for developing therapeutic and microbicidal agents to help combat the spread of AIDS.


Assuntos
Fármacos Anti-HIV/química , Fármacos Anti-HIV/farmacologia , Proteína gp120 do Envelope de HIV/metabolismo , HIV-1/efeitos dos fármacos , Fragmentos de Peptídeos/metabolismo , Internalização do Vírus/efeitos dos fármacos , Estrutura Molecular , Relação Estrutura-Atividade , Ressonância de Plasmônio de Superfície
20.
Virology ; 358(2): 273-82, 2007 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-17027056

RESUMO

The La Crosse Virus (LACV) M segment encodes two glycoproteins (Gn and Gc), and plays a critical role in the neuropathogenesis of LACV infection as the primary determinant of neuroinvasion. A recent study from our group demonstrated that the region comprising the membrane proximal two-thirds of Gc, amino acids 860-1442, is critical in mediating LACV fusion and entry. Furthermore, computational analysis identified structural similarities between a portion of this region, amino acids 970-1350, and the E1 fusion protein of two alphaviruses: Sindbis virus and Semliki Forrest virus (SFV). Within the region 970-1350, a 22-amino-acid hydrophobic segment (1066-1087) is predicted to correlate structurally with the fusion peptides of class II fusion proteins. We performed site-directed mutagenesis of key amino acids in this 22-amino acid segment and determined the functional consequences of these mutations on fusion and entry. Several mutations within this hydrophobic domain affected glycoprotein expression to some extent, but all mutations either shifted the pH threshold of fusion below that of the wild-type protein, reduced fusion efficiency, or abrogated cell-to-cell fusion and pseudotype entry altogether. These results, coupled with the aforementioned computational modeling, suggest that the LACV Gc functions as a class II fusion protein and support a role for the region Gc 1066-1087 as a fusion peptide.


Assuntos
Encefalite da Califórnia/virologia , Vírus La Crosse/fisiologia , Proteínas Virais de Fusão/fisiologia , Animais , Linhagem Celular , Humanos , Mutagênese , Estrutura Terciária de Proteína/fisiologia , Proteínas Virais de Fusão/química , Proteínas Virais de Fusão/genética , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...